Graph Theory Question

 

Graph theory question


Let G = (V, E) be a complete (A, B)-bipartite graph, such that the set of vertices of G is partitioned into two parts that have no edges between themselves.

A graph G′ is said to be k-colorable if it is possible to partition its set of vertices into at most k independent sets (that is, groups of vertices with no edges between them). Moreover, if a graph is k-colorable, then it is also (k+1)-colorable, (k+2)-colorable, and so on, since additional colors can always be assigned without breaking the coloring rules.

Using this concept and the handshaking lemma, which states that the sum of the degrees of the vertices of a graph is equal to twice the number of its edges, analyze the alternatives below.

I - A complete bipartite graph Kn,nK_{n,n} has n(n1)2\frac{n(n-1)}{2} edges.

II - A complete bipartite graph Kn,nK_{n,n} has n3n^3 edges.

III - A complete bipartite graph Kn,nK_{n,n} has n2n^2 edges.

IV - A  (A,B)(A,B)-bipartite graph with A=113|A|=113 and B=17|B|=17 is 2-colorable.

V - A  (A,B)(A,B)-bipartite graph with A=113|A|=113 and B=17 is 3-colorable.

Which of the alternatives below contains all the correct items?

A) Only II
B) III and IV
C) I and V
D) III, IV and V
E) None of the above


Original ideia by: Lademir Junior



Comentário do professor:

Caro Lademir, sua questão é interessante. Apesar de conter todas as definições necessárias para seu entendimento e resposta, ela aborda conceitos que não são explorados no capítulo 2 do livro utilizado. Temo que isto possa aumentar o risco de contestações, caso esta questão seja usada num teste. Para evitar problemas, prefiro deixá-la de fora do blog oficial.

Comentários

Postagens mais visitadas deste blog

Random Network Question

Scale-free network